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Direct measurements of non-linear 
stress-strain curves and elastic properties 
of metal matrix composite sandwich 
beams wi th  any core material 

J A C Q U E S  E. SCHOUTENS 
Metal Matrix Composite Information Analysis Center, Kaman Tempo, 
816 State Street, Santa Barbara, California 93102, USA 

A theory for measuring non-linear stress-strain curves and elastic properties of 
metal matrix composite (MMC) sandwich beams subjected to pure bending loads 
is discussed. The beam is made from any core material sandwiched between an 
upper facing of unreinforced metal and a lower facing of MMC with unidirectional 
fibre reinforcement or vice versa. The model developed shows that the deter- 
mination of the position of the neutral axis is critical to the measurements discussed 
in this paper. The analysis removes the restriction of the effects of the core. With 
the aid of this model, we show that the position of the neutral axis can be deter- 
mined directly from surface strain measurements. Measurements of neutral axis 
position lead directly to the determination of the beam elastic properties and, thus, 
directly obtained from surface strain measurements. It is shown that the model 
predicts longitudinal stresses and strains within any layer of the beam. The analysis 
includes the limiting case of a very weak core material. A consequence of this 
model is the determination of the MMC facing fibre volume fraction. A detailed 
error analysis predicts that the longitudinal elastic modulus of an MMC material 
facing can be obtained with an uncertainty between 4 and 6% if the surface strain 
measurements and beam dimensions can be obtained with an uncertainty of 1%. 
The volume fraction can be obtained within 10% uncertainty, although better 
methods are available for that measurement. 

1. I n t r o d u c t i o n  
In the pure bending of sandwich beams, the axial 
stiffness of the core material in tension or com- 
pression is usually considered to be negligible 
compared with the stiffness of the facing 
materials. To meet the requirement of weak core 
material, cores are generally made from relatively 
large prismatic hexagonal cells of aluminium foil 
or paper, with the prismatic cell axis perpen- 
dicular to the facings. Such an analysis also 
assumes that the core bonding to the facing is 
perfect. These restrictions result in simple 
models for obtaining stress-strain curves from 
surface strain measurements. The model 
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proposed by Bert [1] is such a simple model, 
although it predicts compressive strains in the 
centre of the compressed facing material which 
are greater than the surface strain! Generally, 
elastic properties obtained from bending tests 
yield values that are somewhat higher than from 
tensile tests. 

There are conditions in which the sandwich 
beam whose mechanical properties are desired 
consists of a stiff core with only marginally 
stiffer facing materials. This is the case treated in 
this paper. The present treatment effectively 
removes the weak core assumption and predicts 
sandwich beam mechanical properties in the 
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limit of very weak core material. In the present 
analysis, the sandwich beam is assumed to be 
made from any core material and any facing 
material. Thus, the core can be made from low 
stiffness metal, porous material, or resins. 
Because of their low ductility, dense ceramics 
sandwich beam materials may have to be 
analysed by other methods. To obtain meaning- 
ful mechanical properties for sandwich beams 
with any core materials, the test specimen should 
have a large span-to-depth ratio to minimize the 
effects of shear deformation [2]. Thus, in the 
following analysis, a beam cross-section is 
assumed to remain planar during bending. 

2. Analysis 
Fig. 1 Shows the cross-section of a sandwich 
beam of �9 W and total thickness H. It con- 
sists of three materials: a top facing having an 
elastic modulus, Era; a core material with an 
elastic modulus, E~; and a bottom facing 
material made of unidirectional fibre reinforced 
MMC of longitudinal modulus, E c. We assume 
that E~ < Era and Era ~< Eo. This means that the 
neutral axis will be at the sandwich beam centre 
line or below it by a fractional value ~. (It will be 
above the centre line if the stiffer facing is at the 
top.) The top facing has thickness t, and the 
bottom facing thickness tb- A bending moment 
M is applied to the beam as shown, resulting in 
the material above the neutral axis being in com- 
pression and that below it being in tension. The 
compressive stress in the centre of the upper 
facing is ac, and in the centre of the bottom 
facing it is at. The compressive and tensile stresses 
in the core material are ar and a~ra, respectively. 
The upper facing has area An, the bottom facing 
area is Ab, and the Compressive and tensile 

regions of the core areas a r e  Aur a and Ab, ~, 
respectively, these areas depending on the 
position of the neutral axis. The positions of 
these stresses with respect to the neutral axis are 
given by 

a = �89 + a ) H -  tu] 

b = �89 + a ) H -  2tu] 

c -- �89 - ~ ) H -  2tb] 

d = �89 [(1 - a ) H -  tb] 

(1) 

(2) 

(3) 

(4) 

and the areas are 

a~ = t,, W (5) 

Aur a = �89 + ~t)H- 2t,]W (6) 

Abm = �89 [(1 - -  o o a -  2tb]W (7) 

Ab = tb W (8) 

and the linear stresses (Hooke's Law behaviour) 
are given by 
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Figure 1 Schematic illustration of sandwich beam-stress diagram used in the present analysis. 
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where r is the radius of curvature of  the neutral 
axis. The sum of forces acting upon the cross- 
section is given by 

aoAu + o'cmAum + 0" tmAbm 4- 0 " t A b  = 0 (13) 

Substituting Equations 1 to 12 into Equation 13 
yields the position of the neutral axis, after con- 
siderable algebra, as 

it should. Likewise, when E~ = E m  = El = E, 

t hen~  = ~1 = ~2 = ~3 = 0. 

2.3. Parametr ic case for M M C  
When t~ = tb = t, we can consider another 
simplifying approach.  The longitudinal elastic 
modulus of  a unidirectional fibre reinforced 
M M C  facing material can be obtained, to a 

4E, [(t2u - t 2) - (tu - /b)H] 4- 3Em(Htu -- t2u) + 3E~(t~ -- n tb )  

( 4 E ~ -  3Em)ntu - ( 3 E c -  4 E O H t b -  4 E 1 H  2 (14) 

Note that in this derivation, the neutral axis was 
assumed to be below the beam centre line 
because the bot tom facing tensile strength and 
stiffness were assumed greater than that of  the 
top facing. In the reverse case, c~ < 0. 

2.1. Case for equal  fac ing th ickness and 
s t rong core 

When tu --- tb = t is assumed, then the general 
case given by Equation 14 reduces to 

3(Ec -- Era)(1 -- t /H)  
~l = (15) 

8E~(H/2t - 1) + 3(Ec + Em) 

which shows the influence of the core stiffness on 
the location of the neutral axis. Now, the effects 
of  the core can be determined somewhat more 
easily by using the following definition 

E~ = fErn (16) 

where f is a fraction whose value can range 
between close to zero and unity or 0 < f ~< 1. 
Then we find that Equation 15 becomes 

3(Er -- Era)(1 - t /H)  
~z = (17) 

[8 f (H/2 t  -- 1) + 3]Em + 3Ec 

This approach is seen to be useful later. 

2.2.  Case for a weak  core 
Again, considering that tu = tb = t in Equation 
14 and assuming that a weak core can be simu- 
lated by setting f ~ 0, Equation 14 can be 
reduced to 

a3 = EoYEm 

This equation clearly shows that when E~ = Era, 
= 0, or the neutral axis is at the centre line of  

the beam cross-section. 
In the above equation, it can be seen also that 

when tu --* H or t b ~ H or the entire core thick- 
ness becomes H, then ~ = ~1 = ~2 = c~3 = 0 as 

good approximation,  from the rule of  mixtures 

Ec = EfVf + (1 - Vf)E m (19) 

where Vf is the volume fraction of fibre in the 
composite, and using a definition employed else- 
where [3], 

Ef = KoE m (20) 

where K0 is a constant. Equation 19 can then be 
written as 

Eo = { ( g 0 -  1)Vr + 1}era (21) 

For  a strong core case, substituting Equation 21 
into Equation 17 yields 

3(K0 - 1)Vr (1 - t /H)  
~2 

8 f ( H / 2 t  - 1) + 3(K0 - 1)Vf + 6 

(22) 

Thus, ~2 = ~2(K0, Vf, t, H)  and can be par- 
ameterized in design analyses for cases where the 
neutral axis positions are needed. Note  that as 
K0 --* 1 (Vr --) 0 [3]), then ~2 --* 0. For  a weak 
core when f - 0, Equation 22 reduces to 

( K ~  ( I - H ) ( 2 3 )  
ct3 = ( K ~ :  F) V~+ 2 

Table I summarizes the expressions for the 
position of  the neutral axis so far derived. 

2.4.  Linear  s t r e s s  r e l a t ions  
The linear or Hooke  Law stress relations can be 
derived from Equations 1 to 13 and a sum of 
moments  about  the neutral axis, or 

M = acAua + a~mAumb + 0"tmAbrnC + fftAb d. 
(24) 

Substituting Equations 5 to 8 into Equation 24 
yields 

M = W { G t u a  + {aon~b 2 + 30"tmC2 -~- O't/bd }. 

(25) 
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T A B  L E I S u m m a r y  o f  the expressions for  the posit ion o f  the neutral axis 

Parameters  c~ Commenl s  

t~ r tb. H 

t u = t b = t  

E~> F~> F~ 

t . = t b = t  

E~ > E ~ . E  l = f E  m 

0 ~ f ~  I 

t u ~ I b ~ t 

E, ~ E~ or e~ 
f~-O 

t u = t b = t 

E f  = KoEm,  E 1 = f E , ~  

f r  E c >  g m 

I u : t b = t 

E l ~ E ~ o r E ~ , f ~ _  0 

E l =  K o E  m 

4E~[(t~ - t~) -- (t~ - tb)H ] + 3 E ~ ( H t .  --  t~) + 3Er - H t b )  

(4E, -- 3 E m ) H t  . --  (3E~ -- 4 E ~ ) H t  b --  4E ,  H 2 - -  

3(E~ -- E ~ ) ( I  -- t / H )  

8 E , ( H / 2 t  - 1) + 3(E c + Em) 

3(Er -- Em)( l  - t / H )  

[8 . f (H/2 t  - 1) + 3]E m + 3 E  c 

Er 

3(K 0 - l )Vf( l  - t / H )  

8 f ( H / 2 t  - 1) + 3(K 0 -- I )V  r + 6 

(K0 - Ovr 
(K0 - l)v~ + 2 

General  case 
(Equat ion 14) 

Strong core 
(Equat ion 15) 

Strong core 
(Equat ion 17) 

Weak core 
(Equat ion 18) 

Strong core 
parametr ic  case 
(Equat ion  22) 

Weak core 
parametr ic  case 
(Equat ion 23) 

Now, from the stress diagram in Fig. 1, we note 
that 

and 

Gc Gem 

a b 
(26) 

a~ = at___~ (27) 
d c 

and eliminating O'cm and O'tm in Equation 25 using 
Equations 26 and 27 yields 

= - Aat (28) 

and substituting Equation 28 into the moment  
Equation 25 gives, after some algebra, that the 
tensile stress in the centre of  the bo t tom facing is 
given by 

4 a d M  

o- t : W[2a(2d2tb + 3c 3) - 2d(2a2t. + 3b3)A0] 

(29) 

where a, b, c, and d are given by Equations 1 to 
4, and 

a ( 2 d 2 t b  + 3c3"~ 

Ao = ~ l \ 2a2 tu  + 3b3] (30) 

Equation 30 is the same as Equation 28 defining 
A. Equations 28 and 29 give the stresses at the 
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centre of  the facings in terms of  the bending 
moment  for the case of  a strong core. Since a, b, 
c, and d are functions of  ~, o- t and a c are also 
functions of  ~. The value of  ~ can be either 
calculated as shown by the equations listed in 
Table I, or can be measured, as we will discuss 
below. In the special case when t, = t b = I, 
Equations 29 and 30 remain unchanged except 
for that substitution. For  a weak core, the com- 
pressive and tensile stresses can be neglected in 
the core compared to the facing material 
strength, so that the moment  equation becomes 

Mw "~ (aotu a + attdd) W (31) 

where the sign ~ is set because f _ 0, and the 
force equation becomes 

a~tu W + o'tt b W " ~  0 ( 3 2 )  

Eliminating a~ between Equations 31 and 32 
yields 

2M 
a~ = (t. - t b - 2~H)t  b (33) 

and eliminating cr t in Equations 31 and 32 yields 

2M 
o-c - (34) 

(t,  -- t b - -  2~H) t ,  

These equations give the linear stress relation in 
the centre of  the facing material with the 
assumption that the core material exerts a neg- 
ligible effect upon these facings other than for 
stability against buckling. 



2.5. Strain relations 
Fig. 2 shows a diagram for computing the strain 
relations. The compressive surface strain at the 
top facing is ~.  and the tensile surface strain at 
the bottom facing is etb. These strains are a 
distance a, and ab, respectively, from the neutral 
axis, given by 

au = �89 (1 + e)H (35) 

a b = �89 (1 -- e)H (36) 

and compressive and tensile strains anywhere 
within layers parallel to the sandwich beam faces 
are given by 

Y, ~ = - - e ~  ( 3 7 )  
au 

for compressive strains, and 

Yb (38) 
S t ~ - -  l~tb 

ab 

for the tensile strains. Substitution of Equations 
35 and 36 into Equations 37 and 38 immediately 
yields 

28cu 
Sc - (1 + e )H y~ (39) 

and 

2e,~ (40) 
et - (1 - -  ( X ) / ~  Yb  

and when c~ = 0, which implies facing materials 
of equal stiffnesses, ~tb = S~u SO that sc = 2zcuyu/ 
H and st = 2StbYb/H. NOW we can calculate the 
strain in the centre of the facing materials. For 
the top face, Yu =- a given by Equation 1, so that 
by substitution into Equation 39, there results 

sou/' 2-H (41) 

and for the tensile strain in the centre of the 
bottom facing, with Yb -- b given by Equation 2, 
there results 

These equations show that these strains are 
obtained entirely from measured quantities: sur- 
face strains and sandwich beam dimensions. 
Moreover, these strains are independent of the 
core material in this model. A simple analysis 
shows that in the case of facing material of equal 
thickness, Equations 41 and 42 reduce to 

for the compressive strain, and for the tensile 
strain 

The surface strains can now be related to the 
radius of curvature of the neutral axis in the 
following manner. The surface compressive 
strain [4] is given by 

H 
sou = --(1 + e) 2r (45) 

and the surface tensile strain is given by 

H 
etb = ( l  - -  ~ )  2r (46) 

where r is the radius of curvature. Taking the 
absolute value of Scu in Equation 45, solving that 
equation and Equation 46 for the radius of 
curvature, and equating the results and solving 
for ~, we obtain what can be considered the 
measured position of the neutral axis, %,  or 

(X m -~- ecu - -  Stb (47) 
8cu -~- 8tb 

% 

t~Lf A. 

- -  ~k'k'k_ ~c 

~tb 

neufra/ 
axis 

) h/ 

Figure 2 Diagram for computing strain rela- 
tions. 
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which shows that it depends only on measured 
surface strains. This is, of  course, a consequence 
of  the model employed. 

3. M e a s u r e m e n t s  o f  m e c h a n i c a l  
p r o p e r t i e s  

We have shown above that the strains within a 
sandwich beam, as shown in Fig. 1, can be 
obtained from surface strain measurements and 
beam dimensions, and that the neutral axis can 
be obtained also from surface strain measure- 
ments. The position of  the neutral axis from 
surface strain measurements is based on the 
assumption that shear deformation of  any 
beam cross-section is entirely negligible. Using 
Equation 47, we can develop an expression for 
the MMC facing material elastic modulus. This 
analysis applies to any facing material, top or 
bottom. Equation 17 gives the neutral axis 
position for the case of  a strong core. Equating 
Equations 17 and 47 gives 

~r - ~tb 3(E~ --  E ~ ) ( 2  - t/H) 
~ou + etb [ 8 f ( H / 2 t  - -  1) -F 3 ]Em -4- 3 E  c 

(48) 

which, when solved for E~, after considerable 
algebra, gives 

a complex problem as a tedious one, involving 
considerable algebraic manipulation. We restric- 
ted the present analysis to equal facing thick- 
nesses because better insights can be obtained 
into the consequences of  the model with rather 
minor restrictions (t, = tb = t). Equations 49 
and 51 reduce to Er = E~ when a = 0 which 
means the case of identical facing materials. 
Therefore, it is only possible to obtain elastic 
properties of  an MMC facing material if the 
other facing material exhibits a known but dif- 
ferent elastic modulus, regardless of  the core 
material used. 

3.1.  M e a s u r e m e n t  of  f ibre  v o l u m e  
f rac t ion  

The model developed so far implies that it may 
be possible to obtain the fibre volume fraction of  
the composite material facing. Equations 22 and 
23 give the position of  the neutral axis for the 
cases of  a strong and a weak core, respectively. 
These expressions are parametric in Vf and 
Ko = El~Era, which is convenient for design 
analyses [3]. Therefore, these equations lend 
themselves to calculating Vf. After a lot of  
algebra, equating Equations 22 and 47 and solv- 
ing for Vr gives the volume fraction of  the corn- 

Eo = I 8 f H ( H -  2t)(etb-- e~ + 12t2(etb + e~ -- 24Htec"l 
12t2(e~u + --~b) S '~-H-~st~ . E~ (49) 

This equation shows that Er is obtained from 
surface strain and beam dimension measure- 
ments only. In the next section, we will discuss 
the uncertainties in such measurements. Equation 
49 is for the strong core material case. 

When the core material is weak, then Equation 
18 is equated to Equation 47 to yield 

8cu "~- 8tb E~ -4- E m \ 

which, when solved for E~, gives 

eCu -- (ecu + ~tb)(t/2H) 
E e ---- E m (51) 

~,b - (~u + etb)(t /2H) 

Equation 49 reduces to Equation 51 w h e n f  "-~ 0. 
In Equations 49 and 50, it is assumed that the 
top and bot tom facings have identical thick- 
nesses or tu = tb = t. To obtain the general case 
for different facing material thicknesses and a 
strong core, Equations 14 and 47 must be 
equated and solved for E~. This is not so much 

posite facing for the strong core case as 

= H [ 8 f ( H / 2 t -  1) + 6](etb -- er (52) 
3(/(0 - l)[(gCu + etb)t -- 2H~tb] 

and equating Equation 23 to Equation 47 and 
solving for Vr gives for the weak core case 

2(Stb - -  geu) 
v~ = (53)  

[ ( 2  - K 0 ) ~ o u  - K 0 ~ t b ] ( 1  - -  t /H) 

In these derivations, again we have assumed 
t~ = tb = t. We see that in both the strong and 
weak core cases, Vf depends only on the sand- 
wich beam dimensions and the measured surface 
strains, and the ratio of the measured fibre-to- 
matrix elastic modulus. 

4 .  E r r o r  a n a l y s i s  
The equations derived in the preceding sections 
can be represented by functional relationships of  
the form f = f (x l ,  x2, x 3 , . . . )  where xl, x2, 
x3 . . . .  are measured quantities. In estimating 

4426 



the errors in the values of  x~, x2, x3 . . . . .  the 
cross-correlation terms are neglected and, 
therefore, covariant uncertainities are not con- 
sidered. Consequently, the uncertainty in this 
functional relationship can be written as [5] 

\ Ox,) \ OxU 

(3SXl 2 Ax~ + . . .  (54) 
+ \Ox3,1 

4.1. Uncertainty in c~ m 
Equation 47 gives the measured position of the 
neutral axis in terms of  surface strain measure- 
ments. Applying Equation 54 to Equation 47 
gives, after some algebra, 

A~ m _ _  2Ctbl l (Aecu~ 2 
~ m  1 - -  (Etb/Scu)2 \ ~cu ,,/ 

1 (AetbT]l/2 (55) 
+ - I \ 

which shows that the uncertainty in a m depends 
also on the actual magnitude of  the surface 
strains. Fig. 3 shows the predicted uncertainty in 
em as a function of  the measured surface strain 
ratio E~u/a~u for two cases of surface tensile 
strains: etb = 1 and 5%. In this calculation, we 
assumed that the uncertainties in surface strains 
are 1%. These curves show that the uncertainty 
in ~ rises rapidly as ar --* 1 as would be 
expected. However, the magnitude of  the uncer- 
tainties even at surface strain ratios close to 

unity is less than 0.1%. Thus, under most cir- 
cumstances, the neutral axis position can be 
measured accurately. 

4.2. Uncertainties in measured elastic 
modulus 

We calculated the uncertainties in the composite 
facing elastic modulus for the strong and the 
weak core material. For  the strong core material 
case, we used Equation 49 and applied Equation 
54 to obtain, after, considerable algebra, an 
expression for the uncertainty in E~, which is 

E2c A 2 B 2 

{ [ - 8 f H ( H  - 2t) + 12fl - 24Ht]B 

+ { [ 8 f H ( H -  20 12t2A}2 acu \ ~cu ) 

+ 12fl]B + (12t 2 + 24Ht)A} 2 ~tb 2 etb // 

+ { [ -32fH(e tb  -- ecu) + 24t(e,b + Sou) 

-- 24Hac,]B -- [24tsou -- 24(H + t)Stb]A}Zfl 

x (A---/)z+ { [ 1 6 f ( H -  2t)(etb-  e c . ) -  24tGu]B 

+ 24tAet~}2H2(-~-) 2) (56) 

,10-2 
~ 0 ~12 

�9 %1% -.,a ~J% ,,o.ol 

(%) 

5 
- -  I I I I l 1.4 1.6 1.8 2.2 2.4 

STRAIN RATIO, ~cu/Etb 
Figure 3 Predicted uncertainty in the measured 
position of the sandwich beam neutral axis. 
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where 

A = [ 8 f H ( H  -- 2t)(etb -- ec.) 

+ 12t2(etb + ec,) -- 24Htgtb ] 

(57) 

B = [12t2(e~ -- etb ) -- 24Htetb] (58) 

Fig. 4 shows the predicted uncertainty 
obtained with Equation 56 using the following 
numerical values: t = 0.05 H, H = 1 (no speci- 
fied units), f = 0.8 (core stiffness 80% of  the 
stiffness of  upper facing or 0.8Era), At / t  ~- 

A H / H  ~- 0.01, and Ae~u/e~u - A/~tb//3tb '~  0.01. 
The uncertainty AEo/Er is plotted as a function 
of  the surface strain ratio, which shows that the 
composite elastic modulus can be measured 
using Equation 49 to an uncertainty of  6% or 
less depending on the relative stiffness of  the top 
and bottom facings in the sandwich beam. The 
greater this difference or as E~/E m increases, it 
translates into a greater measured surface strain 
ratio gcu/gtb and, hence, lower uncertainty in E~. 
However, the limit appears to be around 3% in 
the uncertainty of  E~ for ecu/Stb ~ 2.2. The curve 
of  Fig. 4 is valid for 0.01 ~< /3tb ~< 0.5 as they all 
fall in the same place. 

The uncertainty in the measurement of  E~ for 
the weak core material was obtained in a similar 
manner. Equation 54 was applied to Equation 
51 to yield, after much algebra, 

I0 ~ 

~2 

I0 ~ 

5TRONO CORE 
f =08 
H=r 
t=O05 
OOf .'Etb." 05 

,aqt --,#, l u  : oo~ 

I I I I I I 
12 1.4 L6 1.8 2.0 2.2 2.4 

STRAIN RA T/O, Ecu/Ctb 

Figure 4 Predicted uncertainty in the measured composite 
elastic modulus. Strong core case. 

tainty in Ec also sharply increases with the sur- 
face strain ratio at low tensile strains. These 
effects are consequences of  the models developed 
in this paper. 

E~ - [(2H - t)e~b ~ t-'-~-c,]2-['(2"-H 7 t)ecu -- te,b]: L \  eou / + \ etb / J 

~tb) t 2 (ecu -- ecu + 
--_-T + [(2H . . . .  t)etb t~o r t t ' . = ' 2 n  t~t~,': ( 2 H -  t) + gcu2 8tb / 

Fig. 5 shows the predicted uncertainty 
obtained from Equation 59 using the following 
numerical values: t -- 0.05 H, H = 1 (no speci- 
fied units), At l t  ~ - A H I H  ~-0 .01 ,  and Ae~u/ 
~cu "~ Agtb//~tb - -  0 .01 .  TWO cases are shown: 
measured surface tensile strains of 1 and 5%. As 
the surface strain values increase, the uncer- 
tainty diminishes. Thus, the uncertainty in E~ 
ranges from 4% down to 1.6%. At values of  ~tb 
greater than 5% the uncertainty in Ec asymptot- 
ically approaches 1.5%. 

These results show that the weak core material 
affects the uncertainty as the loading strains 
increase, meaning that uncertainties in Er are 
best estimated at high elastic strains. The uncer- 

(59) 

4.3. Uncer ta in t ies  in measured va lues 
of v, 

For the case of  a strong core material, Equation 
54 is applied to Equation 52 which yields, after 
much algebra, the uncertainty in the measured 
fibre volume fraction, or 

AZ? 1 { 
V~ 2 = AB2(st b -  ~r 2 [ - - B - -  3(Ko-- l) 

- + { B -  (~,u - ~ o )  • (~tb ~ . ) t ]  2 ~c. \ ~c. / 

2 + A2B 2 • [3(K0 -- 1)t -- 2H]} z Stb \ etb / ) 
/ 
( { ( - - 8 f H 2 / 2 t 2 ) B  -- A[3(K0 - 1) x 
\ 
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c~ 
LU 

WEAK CORE 
t=O.05 
AccJ~cu = Aftb/Gtb = 00! 
~t~= ZH/k? = oo/ 

surface tensile 
strain Ctb(% ) 

5 

70 o I I I I I I 
1.0 1.2 1.4 1.6 1.6 2.0 2.2 2.4. 

STRAIN RATIO, s 

Figure 5 Predicted uncertainty in the measured composite 
elastic modulus. Weak core case. 
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Figure 6 Predicted uncertainty in the measured composite 
fibre volume fraction. Strong core case. 

x (Scu--k~tb)]}zt2(A-~/)2+{[Sf(H/2t-- 1 ) + 6 ] B  

+ 6 A ( K o - l ) ~ t b } 2 H 2 ( - ~ - )  2) 9 [(~oo + ~t~)t 

(AKoy (60) - 2H~tb]2 K2 \ K0 J 

where 

A = 

B 

[ 8 f H ( H / 2 t  - 1) + 6H](etb -- e~u)(61) 

= 3(Ko -- 1) [(e~u + ,gtb)t - -  2Herb](62) 

Fig. 6 shows a plot of  the predicted uncertain- 
ties in Vf as a function of the surface strain ratio. 
These results were obtained with the following 
numerical values: K0 = 7.5 (ratio of  graphite 
fibre to aluminium matrix elastic modulus), t = 
0.05 H, H = 1 (no specified uni t s ) , f  = 0.8 (core 
material has 80% of the top facing stiffness or 
0 .8Era )  , Aecu/ecu -~ AEtb/gtb "" 0 .01,  and A K o /  

K0 -- 0.01. Two curves are shown in Fig. 6: one 
for an uncertainty in the dimension of the sand- 
wich beam of A t / t  ~- A H / H  ~- 0.01, and one 
for A t / t  ~- A H / H  ~- 0.001. The prediction of Vf 
for a strong core, while generally decreasing 

sharply with an increased ratio of  surface 
strains, appears very sensitive to the uncertainty 
in measured beam dimensions. Therefore, if this 
method were used to determine the fibre volume 
fraction in the composite, the values of  t and H 
must be measured to an uncertainty better than 
0.001 to obtain uncertainties in Vf less than 
about  4 to 5% . 

A similar analysis was carried out for the case 
of  a very weak core using Equation 53 into 
Equation 54. The results, after much algebra, 
give 

AVf  2 4 ( K  o - 1) 2 

Vf 2 [(2 - K0)ecu - Koetb] 2 ( e t b -  eCu) 2 

{4 + + + 
x ~ou\ ecu / \ Stb / 

• (~,b - *ou) ]K;  \ - ~ 0 / J  

+ (1 --- t ~ )  2 + (63) 

Fig. 7 shows a plot of  Equation 63 for 
the following numerical values: K0 = 7.5, 
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Figure 7 Predicted uncertainty in the measured composite 
fibre volume fraction. Weak core case. 

0.01 ~< /3tb ~ 0.05, t /H = 0.05, AKo/K o ~_ 0.01, 
At/t = A H / H  ~_ 0.01, and Aecu/eou -~ Aetb/etb -- 
0.01. This figure shows that the uncertainty in V r 
for a sandwich beam with a weak core material 
drops off very rapidly with increasing surface 
strain ratio to a minimum value of about 10% at 
ecu/etb --~ 1.6 and rises very slowly thereafter. 
Thus, in this case, the value of Vf cannot be 
obtained to a better uncertainty than about 10%. 
Schoutens [5] has shown elsewhere that the 
volume fraction of composite materials can be 
obtained with an uncertainty of 0.5% using a 
simple laboratory balance with a precision of 
0.01% provided the composite contains no 
porosity. If  porosity is present, the uncertainty is 
around 3% by that method [5]. 

Finally, we have seen that the compressive or 
tensile strain in any layer within the beam is 
given by Equation 39 or 40. Applying Equation 
54 yields the following expression for the uncer- 

tainty in the compressive strain measurements 

( A ~ ' ~  2 
+ \ ~ / /  (64) 

and for the tensile strain measurements 

k et / \ e,b / 

+ \1 + %] (65) 

Assuming as above that Ay/y  ~ A H / H  ~- 0.01, 
using A~c~/ecu _~ Aetb/ etb -- 0.01, and assuming 
from the above analysis that A~/(I ___ ~) _~ As/ 

-~ 0.005, then Aet/~t -~ A~o/ec "-~ 0.018 or 
1.8%. In the analysis of the uncertainties in am, 
E~, and V~, we have used A g t b / g t b  ~ A g c u / e c u  " ~  

0.01 rather than 0.018 for illustration of trends 
in measurements. Using the latter value (0.018) 
would not have altered the results significantly. 
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